北京理工大学研究生课程教学日历

课程名称 <u>先进光学制造与检测</u> 课程代码 0400031 课程性质 专业选修课 主讲教师 程灏波 2017—2018 学年第 1 学期 辅导教师 冯云鹏、文永富 光电 学院 授课对象 研究生—年级

时数	全总		每			
教学计划	学时 期数	讲授	实验	习题	考 核	周 时 数
教学计划	32	30	0	2	0	5

周 上课 时次 方式 数	上课	时		课外间	阅读和书面的作业	学习检查		参考书名
		授课内容	时数	内容	检查方式	所需时间	和章节	
5	课堂讲授	3	第一部分:确定性加工技术。1.1 新型光学元件与系统的需求; 1.2 先进光学元件制造的发展概况及前景; 1.3 光学表面制造流程。	1	如何采用数控技术加工光学元件?	提问	10 分钟	先 进 光 造 技术; 学 技 光 造 术
5	课堂讲授	2	第一部分:确定性加工技术。1.4 光学表面评价指标及应用。第二部分:计算机控制表面成形技术。2.1 计算机控制表面成形技术。2.1 计算机控制表面成形技术。	1	如何确定性的去除表面材料?	提问	10 分钟	先 进 哉 光 造 技术; 学 技 光 造 术
6	课堂讲授	3	第二部分: 计算机控制表面成形技术。 2.2 Preston 基本理论。 2.3 计算机控制表面成形原理和流程; 2.4 驻留时间求解和控制; 2.5 应用实例及专题讨论。	1	CCOS 如何定量 控制?	提问	10 分钟	先 进 哉 光 造 大 光 造 代 光 造 术
6	课堂讲授	2	第三部分:液体辅助制造技术。3.1流体辅助技术概况和发展;3.2磁流变抛光技术。	1	调研水刀切割技术和磁流变效应	提问	10 分钟	先 労 技 代 制 术
7	课堂 讲授	3	第三部分:液体辅助制造技术。3.2 电流变抛光技术。	1	查阅电流变效应	提问	10 分钟	先 进 光 学 制 造 技术
7	课堂 讲授	2	第三部分:液体辅助制造技术。3.2 磁射流抛光技术。	1	如何控制水柱的形状?	提问	10 分钟	先 进 光 学 制 造 技术

8	课堂讲授	3	第三部分:液体辅助制造技术。3.2 磨料水射流抛光技术;3.3 应用实例分析与专题讨论。	1	查阅射流文献。调研深陡度元件(共形元件)如何加工?	提问	10 分钟	先 进 光 学 制 造 技术
8	课堂讲授	2	第四部分:非球面检测与数据处理技术。4.1 光学非球面检测概述;4.2 非球面轮廓测量原理,数据处理和拟合算法,精度分析与误差补偿理论。	1	大口径光学元件 如何检测?	提问	10 分钟	先 进 光 学 制 造 技术
9	课堂讲授	3	第四部分: 非球面检测与数据处理技术。4.3 非球面补偿检测技术,计算机辅助检测与校正技术。4.3 非零及零位补偿检测技术。	1	调研 GMT 主镜、 自由曲面光学元 件检测方法。	提问	10 分钟	Optical Shop Testing
9	课堂讲授	2	第四部分:非球面检测与数据处理技术。4.3子孔径拼接干涉检测技术,以及特殊元件检测技术。	1	如何校正非球面畸变?	提问	10 分钟	光 学 非 球 面 的 设计、加 工 与 检 测
10	课堂 讲授	3	第四部分:非球面检测 与数据处理技术。4.4 应用实例及专题讨论。	1	如何补偿非球面 像差?	提问	10 分钟	Optical Shop Testing
10	课堂讲授	2	第五部分:光学元件亚表面损伤检测技术。5.1 亚表面损伤概述;5.2 亚表面损伤严生机理;5.3 亚表面损伤检测方法。	1	SSD 对成像和激 光的影响?	提问	10 分钟	先 进 光 学 制 造 技术
11	课堂讲授	2	第五部分:光学元件亚 表面损伤检测技术。5.4 磁流变技术在测量亚 表面损伤的应用;5.5 应用实例及专题讨论。	1	如何无损检测 SSD 方法?完成 结课研究报告	提问	10 分钟	先 进 光 学 制 造 技术

一、 教学目的

通过本课程的学习,使本学科硕士研究生学习光学元件制造和检测的原理、流程以及工艺,掌握光学确定性加工的基本理论和思维,以及不同类型光学表面的检测方法和原理,了解不同的先进光学制造技术特点,扩展研究生的思路,开阔视野,提升研究生的创造性思维和工程化应用能力。

二、授课方法和方式

课堂讲授, 穿插应用实例分析与课堂讨论

三、 成绩评定方式

平时作业成绩占 10%, 专题讨论占 20%, 期末研究报告成绩占 70% 报告采取按照指定题目提交一份综述性报告的方式考核, 具体要求:

- 1. 对所要求的分析内容检索文献资料,提交参考文献不少于25篇;
- 2. 报告字数 5000 字以上;
- 3. 在检索、总结归纳上述文献资料的基础上,结合各课题具体要求,撰写报告,分析基本原理、关键技术与难点、新的研究思路(研究方案)、发展动态分析等;
- 4. 报告撰写按通常刊物投稿要求,注意科学性、规范性,包括文字、公式、文献引用等;
- 5. 同时提交报告电子文件及附件,包括报告正文,检索文献,其它参考资料等。

四、 教材和必读参考资料

- 1. Daniel Malacara, Optical Shop Testing, Cambridge University Press, Cambridge, (1973)
- 2. Warren J. Smith, *Modern Optical Engineering*, Oxford University Press, Oxford, (2000)
- 3. 辛企明,近代光学制造技术,国防工业出版社:1997
- 4. 潘君烨, 光学非球面的设计、加工与检测, 苏州大学出版社: 2004
- 5. 杨力, 先进光学制造技术, 科学出版社, 2001

任课教师	-	_年_	_月_	_日
教学院长		玍	B	日
我于凡人	_	_+	刀	⊢

注:

1. 此教学日历由授课教师填写,教学院长签字后执行,学院留存一份。