北京理工大学研究生课程教学日历

课程名称	固体本构理论	时数	全总	学时分配				每
M 生 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	四		学时	讲	实	সা	老	周
课程代码_	21-080100-C02-01 课程性质 选修		期数	一 授	验	题	核	时
主讲教师	刘晓宁 2017—2018 学年第 1 学期	教学计划	.,,,,,,	17	7四	<i>P</i> E2	1/4	数
土 叶钗帅_	<u> </u>	教学计划	48	39	0	6	3	6
辅导教师	宇航 学院	实际上课	48	39	0	6	3	6

授课对象______博士,硕士______

周次	上课	时数		课外阅读和书面的作业		学习检查		参考书名和
	方式		授课内容	时数	内容	检查方式	所需时间	章节
4	多媒体	6	张量与连续介质力 学基础,流变学					参三,章 1, 2
5	多媒体	6	超弹性,热弹性,	2	习题	提问	15 min	参一,章4
6	多媒体	6	柯西弹性,表示定理	2	习题	提问	15 min	参一,章 5, 6
7	多媒体	6	屈服准则与塑性概 述					参一,章 8, 9
8	多媒体	6	塑性一般理论,常见 塑性模型	4	习题	批阅	30 min	参一,章 12 参二,章 1
9	多媒体	6	非线性硬化模型	2	ANSYS 中 Chaboche 模型	提问	15 min	参一,章 13 参二,章 1
10	多媒体	6	粘弹性,蠕变,粘塑 性	2	ANSYS 中率相关 模型	提问	15 min	参一,章 13,15
11	多媒体	6	内变量方法简介,课 程总结					参一,章 21 参三,章 1

一、 教学目的

通过本课程的学习, 使研究生:

- 1、全面和深入了解固体本构关系建立的思想和热力学基础;了解常见固体的流变学分类;
- 2、以张量分析和非线性连续介质力学为基础和语言,全面掌握小变形弹性和塑性本构关系,包括各种硬化模型;
- 3、了解热弹性、粘弹性、粘塑性本构关系及其内变量建模方法;
- 4、能够在计算软件中合理地选择固体材料模型并确定其材料常数。

二、授课方法和方式

课堂讲授与讨论,课上与课余练习。

三、 成绩评定方式

考查:作业、口头报告、书面总结报告。

四、 教材和必读参考资料

(参一) Niels Saabye Ottosen,The mechanics of constitutive modeling,Elsevier Science & Technology Books, 2005。

(参二) 黄克智, 黄永刚, 固体本构关系, 清华大学出版社, 1999.

(参三) J. Lemaitre, J. Chaboche, (余天庆, 吴玉树 译), 固体材料力学,国防大学出版社,1997.

任课教师	_	年_	月_	_日
教学院长		年	月	Н

注:

- 1. 此教学日历由授课教师填写,教学院长签字后执行,学院留存一份。
- 2. 任课教师应将教学日历提供给上课的研究生,课程完成后填写实际上课的学时数。