北京理工大学研究生课程教学日历

课程名称<u>航天器智能任务规划与优化技术</u> 课程代码 0100037 课程性质 选修课 主讲教师 徐瑞 2017—2018 学年第 1 学期 辅导教师 高艾 宇航 学院

时数	全总		每			
- 教学计划	学时 期数	讲授	实验	习题	考核	周时数
教学计划	32	32				6
实际上课						

授课对象 航空航天相关专业研究生

周	上课方式	时数		课外间	阅读和书面的作业	学习检查		参考书名
次			授课内容	时数	内 容	检查方式	所需时间	和章节
14	课堂授课	6	课程导论 经典自动任务规划 原理	1	自主任务规划技 术发展现状	课堂提问	5 分钟	自动规 划 第 1-3章
15	课堂授课、讨论	6	航天器任务规划知 识表示方法	1	常用的规划知识 表示方法 PDDL	课堂提问	10 分钟	自动规 划 第 4-5章
16	课堂授课、讨论	6	航天器任务规划中 的时间处理及规划 技术	2	时间约束表示方法	课堂提问	10 分钟	自动规 划 第 13-14 章
17	课堂授课、讨论	6	航天任务的启发式 规划技术	1	规划中启发式信息	课堂提问	10 分钟	自动规 划 第 9-11章
18	课堂授课、讨论	6	航天器多智能体规 划 航天器接近轨迹规 划	2	多智能体系统	课堂提问	10 分钟	自动规 划 第 19、24 章; 技 术文献
19	课堂授课	2	自主姿态规划与优 化方法	1	姿态约束及分类	课堂提	5 分钟	技术文献

一、 教学目的

通过本课程讲解,学习航天器智能任务规划与优化技术,了解未来航天器在轨智能自主控制技术的发展 趋势,提高对航天器前沿自主技术的理解,掌握智能任务规划和优化的核心思想及基本算法,提升智能控制 软件编程能力,并能够使用相关知识建模方法和规划技术对现实问题进行建模求解。

二、授课方法和方式

课堂讲授、讨论

三、 成绩评定方式

百分制考核; 航天器任务规划系统设计与实现大作业(50%), 平时成绩(50%)

四、 教材和必读参考资料

- 1. Malik Ghallab, Dana Nau, Paolo Traverso. Automated Planning: Theory and Practice [M]. 北京:清华大学出版社,2004. (自动规划,姜云飞,杨强,凌应标 等译)
 - 2. 谷文祥,殷明浩,徐丽等. 智能规划与规划识别 [M].北京:科学出版社,2010.
- 3. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach [M]. United States of America: Prentice hall, 2010.

任课教师	 年	_月_	_日
教学院长	年	月	日

注:

- 1. 此教学日历由授课教师填写,教学院长签字后执行,学院留存一份。
- 2. 任课教师应将教学日历提供给上课的研究生,课程完成后填写实际上课的学时数。